Série (sub)harmonique

On a déjà vu sur ce blogue la démonstration aussi vieille qu’élégante de Nicole Oresme (dont on devrait prononcer le nom “Orême” selon toute vraisemblance [1]) de la divergence de la série harmonique.  En d’autres mots, on a r=1n1rlorsquenEn consultant les questions de la compétition Bernoulli Trials de 2004 [2], tenue à l’Université de Waterloo, je suis tombé sur celle-ci

7. Let an be the nth positive integer whose digits do not include 9 when written in base 10.

TRUE or FALSE? n=11andiverges.

Ah ! Est-ce qu’on enlève assez de termes à la série harmonique pour la rendre convergente ? Je me rappelle avoir été estomaqué lorsque j’ai consulté la solution. Et je ne me rappelle par quel lien ou référence, mais cela m’a aussi permis de découvrir et lire l’excellent livre Gamma : Exploring Euler’s Constant de Julian Havil, certainement un des livres de mathématiques « style grand public » des plus substantiels (entendre : difficiles). On y apprend que cette question a été considérée par A. J. Kempner en 1914. On répondra donc à la question ci-haut, mais on note que la démarche est la même pour les chiffres autres que 9 (spécifiquement de 1 à 8) et essentiellement la même pour le chiffre 0 (il ne suffit que d’un petit ajustement). Il est aussi possible d’étendre la démarche à n’importe quelle séquence de chiffres, par exemple, on enlève tous les nombres qui contiennent la séquence « 42 » ou « 213 » ou « 112358 », etc.

On cherche donc à savoir si cette série converge : 1+12+13+14+15+16+17+18+110+  +118+120+  +188+1100+ On peut d’abord essayer de calculer le nombre de termes qu’il nous reste par rapport à la série harmonique originale. On peut grouper les termes selon le nombre de chiffres que l’on retrouve au dénominateur. On avait au départ 9 termes avec un seul chiffre au dénominateur et on en a enlevé qu’un seul, 19, il nous reste donc 8 termes avec un seul chiffre au dénominateur. On avait au départ 90 termes avec deux chiffres au dénominateur, on en a enlevé 18 (c’est-à-dire les termes 119, 129, 139, 149, 159, 169, 179, 189, 190, … , 199), il nous reste donc 72 termes avec deux chiffres au dénominateurs. Or, plutôt que de soustraire les termes écrits avec le chiffre 9 à la série originale, une méthode plus efficace nous amènerait à simplement dénombrer les termes écrits sans le chiffre 9 (et ne commençant pas par 0). On a donc 8 possibilités pour le premier chiffre du nombre (c’est-à-dire 1, 2, 3, 4, 5, 6, 7, 8) et 9 possibilités pour les chiffres suivants (c’est-à-dire 0, 1, 2, 3, 4, 5, 6, 7, 8). Le tableau suivant rend compte de ce dénombrement.

Nombre de chiffres au dénominateur
Nombre de termes
18
28×9
38×9×9=8×92
48×9×9×9=8×93
n8×9n1

Ainsi, sur les termes avec n chiffres au dénominateur, on en garde 8×9n1. Et en général, sur les 10n1 premiers termes de la série harmonique originale, il nous reste seulement 81+89+892+893+  +89n1termes.  En effectuant la mise en évidence de 8, on peut par la suite exprimer la somme de la série géométrique entre parenthèses81+89+892+893+  +89n1=8(1+9+92+93+  +9n1)=89n191=9n1Cela nous permet de découvrir un résultat à mon avis fort étonnant et même, de prime abord, paradoxal.  Après avoir enlevé tous les termes comportant le chiffre 9, il nous reste que 9n1 termes sur les 10n1 du départ.  Ainsi, on trouve limn9n110n1=limn9n10n110n10n10n10n10n=limn(910)n110n1110n=010=0c’est-à-dire qu’on a enlevé, de manière asymptotique, presque tous les termes ! En d’autres mots, presque tous les nombres entiers incluent, dans leur écriture en base 10, le chiffre 9 ! Et comme la démarche est la même pour les autres chiffres (de 1 à 8), et que pour une démarche similaire avec le chiffre 0, on obtientlimn98(9n1)10n1=0on peut même affirmer que presque tous les nombres entiers incluent, dans leur écriture en base 10, tous les chiffres ! Cela peut paraître paradoxal lorsqu’on pense à de petits nombres, mais cela devient moins surprenant lorsqu’on prend en exemple des entiers de plus en plus grands comportant de plus en plus de chiffres dans leur écriture. S’il nous reste « un nombre négligeable de termes », peut-être peut-on suspecter que la série converge ?

En regardant les dénominateurs des 8 premiers termes, on trouve qu’ils sont tous plus grands ou égaux à 1, c’est donc que les 8 premiers termes sont tous plus petits ou égaux à 1. Les dénominateurs des 72 prochains termes, ceux à deux chiffres, sont tous plus grands ou égaux à 10, c’est donc que les 72 prochains termes sont tous plus petits ou égaux à 110. Cette observation nous permet de trouver un majorant à la série !  On obtient en sommant la série géométrique infinie n=11an81+89110+8921102+8931103+ =8(1+(910)+(910)2+(910)3+ )=811910=80La série converge ! Bien sûr, 80 est un majorant très grossier et comme la démarche ne discrimine pas le chiffre 9 des autres chiffres, il fait d’ailleurs l’affaire pour ceux-ci. Les sommes, avec 5 décimales de précision, sont données dans le tableau suivant

Chiffre manquant
Somme
023,10344
116,17696
219,25735
320,56987
421,32746
521,83460
622,20559
722,49347
822,72636
922,92067

Pour ce qui est du chiffre 0, la démarche est sensiblement la même et on obtient 90 (puisqu’on a 9 chiffres possibles et non 8 comme premier chiffre du nombre) comme majorant et 23,10344 comme somme approximative.

Référence :

[1] Mathematics Magazine, Volume 83, Number 4, October 2010 , pp. 327-328(2)

[2] Christopher G. Small et Ian Vanderburgh, Mathematics Magazine, Volume 79, Number 3, June 2006 , pp. 199-205(7)

Julian Havil  (2009), Gamma: Exploring Euler’s Constant, Princeton University Press, 2009

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit exceeded. Please complete the captcha once again.