Pour un court (à peine 100 pages) exposé complet et relevé du sujet, écrit avec style, je vous recommande Continued Fractions d’A. Ya. Khinchin. Et ne vous laissez pas berner par les deux premiers chapitres, je vous assure que cela se corse par la suite.
Un fraction continue simple est finie ou infinieLes nombres sont les éléments de la fraction continue. Dans le cas d’une fraction continue finie, on dit que la fraction continue est d’ordre (et qu’elle contient éléments). Remarquons qu’une fraction continue finie est le résultat d’un nombre fini d’opérations rationnelles (addition et division). Si les éléments sont des nombres rationnels, alors cela implique évidemment que la fraction continue finie est toujours égale à un nombre rationnel.
Dans l’étude plus large des fractions continues, on peut considérer que les éléments puissent représenter des nombres réels ou complexes, des fonctions à une variable réelle ou complexe, des fonctions de plusieurs variables, etc. On considère pour notre part que ces nombres représentent uniquement des entiers strictement positifs.
En ce qui concerne les fractions continues infinies, il n’est pas immédiatement apparent que la fraction continue infinie converge vers un nombre réel (cela n’est pas sans rappeler la convergence ou divergence des séries infinies). La fraction continue infinie converge vers un nombre réel, si la série suivante diverge (cette condition est nécessaire et suffisante)[1]. Et comme en ce qui nous concerne les éléments de la fraction continue sont des entiers strictement positifs, cela nous assure que cette série diverge. Les fractions continues finies et infinies dans lesquelles les éléments sont des nombres entiers strictement positifs convergent donc toutes vers des nombres réels (et dans le cas des fractions continues finies, vers des nombres rationnels).
Est-il cependant possible de trouver une correspondance entre les réels et les fractions continues ? Les fractions continues convergent toutes vers un nombre réel, soit, et inversement, peut-on représenter tout nombre réel avec une fraction continue ?
Considérons le nombre réel (strictement positif) . Trouvons le plus grand entier strictement inférieur à . Si n’est pas un nombre entier, alors Il est évident que puisque Si n’est à son tour pas un entier, alors il suffit alors de trouver le plus grand entier strictement inférieur à . On obtient et donc en remplaçantÀ ce moment, on voit bien qu’en général, si pas un entier, alors il suffit alors de trouver le plus grand entier strictement inférieur à afin d’obtenir En tout temps, si est un nombre entier, le processus s’arrête et le nombre réel est représenté par une fraction continue finie. Si est rationnel, tout les seront rationnels. Le processus n’aura donc autre choix que de s’arrêter éventuellement après quelques étapes. Si, par exemple alors on trouvedans lequel puisque Cela implique donc que si, évidemment, n’est pas égal à zéro ou, en d’autres mots, si n’est pas un entier. Le dénominateur de est plus petit que celui de . En considérant la suite et toujours si est rationnel, il faudra tôt ou tard effectivement tomber sur un entier. D’autre part, si est irrationnel, le processus est infini, et tous les seront eux aussi irrationnels. On peut cependant montrer que lorsque la fraction continuetend vers [2].
Le plus merveilleux est que cette représentation des nombres réels en fractions continues est unique, en s’assurant, dans le cas des fractions continues finies, que Cela nous assure que la fraction continue qui représente, par exemple, , est bien unique, telle que et qu’on ne puisse pas écrire
Quelle est la fraction continue représentant le nombre rationnel ?
Notons d’abord que On trouve , et puis . Cela faitLe plus grand entier inférieur à est puisque On a donc , ce qui faitOn a . C’est . Puisque on trouve ensuite que le plus grand entier inférieur à est . C’est . Cela fait On a . C’est . Et comme On trouve . On obtient finalementEt là on arrête ! En effet, , un entier ! La fraction continue simple finie est donc Quelle fraction continue représente le nombre π ? On sait que On trouve donc . On obtient Puis, sachant que on trouve que le plus grand entier inférieur à est . Avec , on obtient alors . Et commeon trouve et ainsi de suite…
La fraction continue qui représente est donc La représentation des réels par des fractions continues n’a pas un intérêt pratique, mais plutôt théorique. Par exemple, elles mettent en évidence certaines propriétés des nombres, notamment le fait qu’un nombre soit rationnel (fraction continue finie) ou irrationnel (fraction continue infinie). Les fraction continues représentent aussi les meilleures approximations rationnelles de nombres irrationnels. Cela fera l’objet d’une autre publication.
[1] et [2] Voir Continued Fractions d’A Ya. Khinchin. Sans rentrer dans trop de détails, voici comment on procède. Comme chaque fraction continue finie est le résultat d’un nombre fini d’opérations rationnelles sur ses éléments, la fraction continue est considérée comme une fonction rationnelle de ses éléments. Elle peut être représentée par le quotient de deux polynômes, disons et ce qui faitDans le cas qui nous intéresse, comme , , … , sont des entiers strictement positifs, la fraction rationnelle est représentée par une simple fraction . Les éléments de la suite sont appelés réduites de la fraction continue. C’est en faisant tendre à l’infini et en travaillant avec les réduites de la fraction continue (et non, techniquement, la fraction continue infinie en tant que telle) que l’on observe que la suite converge vers l’irrationnel .
Pour les 2 premières formules, ce n’est pas plutôt « est infinie » et « ou finie », au lieu de l’inverse ?
C’est corrigé ! Merci !